Deep neural networks are a family of computational models that are naturally suited to the analysis of hierarchical data such as, for instance, sequential data with the use of recurrent neural networks. In the other hand, ordinal regression is a well-known predictive modelling problem used in fields as diverse as psychometry to deep neural network based voice modelling. Their specificity lies in the properties of their outcome variable, typically considered as a categorical variable with natural ordering properties, typically allowing comparisons between different states ("a little" is less than "somewhat" which is itself less than "a lot", with transitivity allowed). This article investigates the application of sequence-to-sequence learning methods provided by the deep learning framework in ordinal regression, by formulating the ordinal regression problem as a sequential binary search. A method for visualizing the model's explanatory variables according to the ordinal target variable is proposed, that bears some similarities to linear discriminant analysis. The method is compared to traditional ordinal regression methods on a number of benchmark dataset, and is shown to have comparable or significantly better predictive power.


翻译:深神经网络是自然适合于分析等级数据(例如,使用经常性神经网络的顺序数据)的计算模型的组合。另一方面,正态回归是一个众所周知的预测建模问题,在诸如心理测量到深神经网络的语音建模等不同领域使用。它们的特殊性在于其结果变量的特性,通常被视为自然定序特性的绝对变量,通常允许在不同的州之间进行比较(“一小”小于“某物”,它本身比“多”少,但允许中转性)。本文章调查了由深层学习框架提供的顺序到顺序的学习方法在正态回归中的应用情况,将正态回归问题作为连续的二进制搜索。提出了一种根据正态目标变量对模型解释变量进行可视化的方法,该方法与线性对立分析有一些相似之处。该方法与一些基准数据集的传统或定态回归方法相比较,并显示其具有可比较或明显更好的预测力。

0
下载
关闭预览

相关内容

神经网络(Neural Networks)是世界上三个最古老的神经建模学会的档案期刊:国际神经网络学会(INNS)、欧洲神经网络学会(ENNS)和日本神经网络学会(JNNS)。神经网络提供了一个论坛,以发展和培育一个国际社会的学者和实践者感兴趣的所有方面的神经网络和相关方法的计算智能。神经网络欢迎高质量论文的提交,有助于全面的神经网络研究,从行为和大脑建模,学习算法,通过数学和计算分析,系统的工程和技术应用,大量使用神经网络的概念和技术。这一独特而广泛的范围促进了生物和技术研究之间的思想交流,并有助于促进对生物启发的计算智能感兴趣的跨学科社区的发展。因此,神经网络编委会代表的专家领域包括心理学,神经生物学,计算机科学,工程,数学,物理。该杂志发表文章、信件和评论以及给编辑的信件、社论、时事、软件调查和专利信息。文章发表在五个部分之一:认知科学,神经科学,学习系统,数学和计算分析、工程和应用。 官网地址:http://dblp.uni-trier.de/db/journals/nn/
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【推荐】RNN最新研究进展综述
机器学习研究会
26+阅读 · 2018年1月6日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】MXNet深度情感分析实战
机器学习研究会
16+阅读 · 2017年10月4日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
19+阅读 · 2018年10月25日
Arxiv
8+阅读 · 2018年3月20日
VIP会员
相关VIP内容
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【推荐】RNN最新研究进展综述
机器学习研究会
26+阅读 · 2018年1月6日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】MXNet深度情感分析实战
机器学习研究会
16+阅读 · 2017年10月4日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员