Standard geostatistical models assume stationarity and rely on a variogram model to account for the spatial dependence in the observed data. In some instances, this assumption that the spatial dependence structure is constant throughout the sampling region is clearly violated. We present a spatial model which allows the spatial dependence structure to vary as a function of location. Unlike previous formulations which do not account for uncertainty in the specification of this non-stationarity (eg. Sampson and Guttorp (1992)), we develop a hierarchical model which can incorporate this uncertainty in the resulting inference. The non-stationary spatial dependence is explained through a constructive "process-convolution" approach, which ensures that the resulting covariance structure is valid. We apply this method to an example in toxic waste remediation.
翻译:标准地理统计模型假定是静止的,并依靠一个变量模型来计算所观察到的数据的空间依赖性。在某些情况下,这一假设,即整个取样区域的空间依赖性结构是稳定的,显然违反了这一假设。我们提出了一个空间模型,允许空间依赖性结构随位置的函数而变化。与以前没有说明这种非静止性规格的配方(例如Sampson和Guttorp(1992年))不同,我们开发了一个等级模型,可以将这种不确定性纳入由此得出的推论中。非静止空间依赖性通过建设性的“过程演变”方法加以解释,这种方法确保由此产生的共变结构有效。我们将这种方法应用于有毒废物补救的一个例子。