The modeling of time-varying graph signals as stationary time-vertex stochastic processes permits the inference of missing signal values by efficiently employing the correlation patterns of the process across different graph nodes and time instants. In this study, we first propose an algorithm for computing graph autoregressive moving average (graph ARMA) processes based on learning the joint time-vertex power spectral density of the process from its incomplete realizations. Our solution relies on first roughly estimating the joint spectrum of the process from partially observed realizations and then refining this estimate by projecting it onto the spectrum manifold of the ARMA process. We then present a theoretical analysis of the sample complexity of learning graph ARMA processes. Experimental results show that the proposed approach achieves improvement in the time-vertex signal estimation performance in comparison with reference approaches in the literature.
翻译:将时间变化的图形信号建模为固定时间- 时间- 顶点切换过程,这样可以有效地利用不同图形节点和时间瞬间之间该过程的关联模式,从而推断出缺失的信号值。在本研究中,我们首先根据从未完全实现的过程中学习时间- 垂直电源谱密度,提出计算图形自动递减移动平均(ARMA)过程的算法。我们的解决办法首先依靠从部分观测到的实现中粗略估计该过程的联合频谱,然后通过将这一估计投射到ARMA过程的频谱中来完善这一估计。我们然后对学习图ARMA过程的样本复杂性进行理论分析。实验结果显示,与文献中的参考方法相比,拟议方法在时间- 垂直信号估计性性业绩方面实现了改进。