In this paper, a direct method is proposed to calculate the eigenvalue of the Zakharov-Shabat system. The main tools of our method are Chebyshev polynomials and the QR algorithm. After introducing the hyperbolic tangent mapping, the eigenfunctions and potential function defined in the real field can be represented by Chebyshev polynomials. Using Chebyshev nodes, the Zakharov-Shabat eigenvalue problem is transformed into a matrix eigenvalue problem. The matrix eigenvalue problem is solved by the QR algorithm. Our method is used to calculate eigenvalues of the Zakharov-Shabat equation with three potentials, the rationality of our method is verified by comparison with analytical results.
翻译:在本文中,提出了一种直接方法来计算Zakharov-Shabat系统的电子价值。 我们方法的主要工具是 Chebyshev 多元数值和QR 算法。 在引入双曲正切映射后,在真实字段中定义的机能和潜在功能可以用Chebyshev 多元数值表示。 使用Chebyshev nodes, Zakharov- Shabat 电子数值问题被转化成一个矩阵性电子价值问题。 矩阵性电子价值问题由 QR 算法解决。 我们使用的方法用三种潜力计算Zakharov- Shabat 方程式的电子价值,我们方法的合理性通过与分析结果进行比较得到验证。