The Mullins-Sekerka problem is numerically solved in $\mathbb{R}^2$ with the aid of the charge simulation method. This is an expansion of the numerical scheme by which Sakakibara and Yazaki computed the Hele-Shaw flow. We investigate a sufficient condition for the number of collocation points to ensure that the length of the generated approximate polygonal curves gradually decreases. We propose a new benchmark function for the Mullins-Sekerka flow to confirm that the scheme works well. Moreover, by changing the fundamental solutions of the charge simulation method, we are successful to establish a numerical scheme that can be used to treat the Mullins-Sekerka problem with the contact angle condition.
翻译:Mullins-Sekerka问题在充电模拟法的帮助下以美元=mathbb{R<unk> 2$以数字方式解决。 这是Sakakibara和Yazaki计算 Hele-Shaw流的数字方法的扩大。 我们调查了合用点数的充足条件,以确保生成的近似多边形曲线的长度逐渐减少。 我们为穆林斯-Sekerka流提出了一个新的基准功能, 以确认这个方案效果良好。 此外, 通过改变充电模拟法的基本解决方案, 我们成功地建立了一个可以用接触角条件处理穆林斯-Sekerka问题的数字方法。</s>