Numerous researchers have conducted studies to achieve fast and robust ground-optimized LiDAR odometry methods for terrestrial mobile platforms. In particular, ground-optimized LiDAR odometry usually employs ground segmentation as a preprocessing method. This is because most of the points in a 3D point cloud captured by a 3D LiDAR sensor on a terrestrial platform are from the ground. However, the effect of the performance of ground segmentation on LiDAR odometry is still not closely examined. In this paper, a robust ground-optimized LiDAR odometry framework is proposed to facilitate the study to check the effect of ground segmentation on LiDAR SLAM based on the state-of-the-art (SOTA) method. By using our proposed odometry framework, it is easy and straightforward to test whether ground segmentation algorithms help extract well-described features and thus improve SLAM performance. In addition, by leveraging the SOTA ground segmentation method called Patchwork, which shows robust ground segmentation even in complex and uneven urban environments with little performance perturbation, a novel ground-optimized LiDAR odometry is proposed, called PaGO-LOAM. The methods were tested using the KITTI odometry dataset. \textit{PaGO-LOAM} shows robust and accurate performance compared with the baseline method. Our code is available at https://github.com/url-kaist/AlterGround-LeGO-LOAM.


翻译:许多研究人员进行了研究,以实现地面移动平台的快速和稳健地优化LIDARodology方法。特别是,地面优化的LIDAR Odorization通常使用地面分割法作为预处理方法,这是因为地面平台上由3DLIDAR传感器捕获的3D点云中的大部分点来自地面。然而,地面分割法对LIDAR的测量法的影响仍未得到密切审查。本文件提议了一个强有力的地面优化LIDAR Ododorization框架,以便利于根据“状态-艺术”(SOTA)方法检查地面分割法对LIDAR SALM的影响。通过使用我们提议的“3DLIDA” 测量框架,可以很容易和直接测试地面分割法是否有助于提取清晰的特征,从而改善SLAMM的性能。此外,利用SOTA的地面分割法,这显示即使在复杂且不均匀的城市环境中,也显示地面分割的稳健固化地面分割法,一种创新的地面-ARSLAM-GOSAR-SAR-SAR-SDSD 数据是使用我们现有的地面测量方法。

0
下载
关闭预览

相关内容

专知会员服务
25+阅读 · 2021年4月2日
专知会员服务
60+阅读 · 2020年3月19日
专知会员服务
109+阅读 · 2020年3月12日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【泡泡前沿追踪】跟踪SLAM前沿动态系列之IROS2018
泡泡机器人SLAM
29+阅读 · 2018年10月28日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Arxiv
12+阅读 · 2021年11月1日
VIP会员
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【泡泡前沿追踪】跟踪SLAM前沿动态系列之IROS2018
泡泡机器人SLAM
29+阅读 · 2018年10月28日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员