In recent years, Visual-Inertial Odometry (VIO) has achieved many significant progresses. However, VIO methods suffer from localization drift over long trajectories. In this paper, we propose a First-Estimates Jacobian Visual-Inertial-Ranging Odometry (FEJ-VIRO) to reduce the localization drifts of VIO by incorporating ultra-wideband (UWB) ranging measurements into the VIO framework \textit{consistently}. Considering that the initial positions of UWB anchors are usually unavailable, we propose a long-short window structure to initialize the UWB anchors' positions as well as the covariance for state augmentation. After initialization, the FEJ-VIRO estimates the UWB anchors' positions simultaneously along with the robot poses. We further analyze the observability of the visual-inertial-ranging estimators and proved that there are \textit{four} unobservable directions in the ideal case, while one of them vanishes in the actual case due to the gain of spurious information. Based on these analyses, we leverage the FEJ technique to enforce the unobservable directions, hence reducing inconsistency of the estimator. Finally, we validate our analysis and evaluate the proposed FEJ-VIRO with both simulation and real-world experiments.
翻译:近些年来,视觉-内脏测量(VIO)取得了许多重大进展。然而,VIO方法在长轨轨道上存在本地化漂移问题。在本文件中,我们建议采用初步估计的Jacobian视觉-内脏光学测量(FEJ-VIRO),以减少VIO的本地化漂移问题,将超广频谱测量(UWB)纳入VIO框架\ textit{ferently}。考虑到UWB主机的初始位置通常不为人所见,我们建议采用一个长期短视窗口结构,以启动UWB主机的位置,以及国家扩增的共变。在初始化后,FEJ-VIRO对UWB的主机的位置与机器人的配置同时进行估算。我们进一步分析了视觉-内脏测量仪的可耐性,并证明在理想的案例中存在不可观察的方向。我们之所以在实际情况下消失一个,是因为对UBWB的定位进行不精确性分析,我们最终又对UFI进行了不精确的分析。