Deep neural models in recent years have been successful in almost every field, including extremely complex problem statements. However, these models are huge in size, with millions (and even billions) of parameters, thus demanding more heavy computation power and failing to be deployed on edge devices. Besides, the performance boost is highly dependent on redundant labeled data. To achieve faster speeds and to handle the problems caused by the lack of data, knowledge distillation (KD) has been proposed to transfer information learned from one model to another. KD is often characterized by the so-called `Student-Teacher' (S-T) learning framework and has been broadly applied in model compression and knowledge transfer. This paper is about KD and S-T learning, which are being actively studied in recent years. First, we aim to provide explanations of what KD is and how/why it works. Then, we provide a comprehensive survey on the recent progress of KD methods together with S-T frameworks typically for vision tasks. In general, we consider some fundamental questions that have been driving this research area and thoroughly generalize the research progress and technical details. Additionally, we systematically analyze the research status of KD in vision applications. Finally, we discuss the potentials and open challenges of existing methods and prospect the future directions of KD and S-T learning.
翻译:近年来,在几乎所有领域,包括极其复杂的问题陈述中,深心神经模型几乎都取得了成功。然而,这些模型规模巨大,有数百万(甚至数十亿)参数,因此要求更沉重的计算能力,无法在边缘装置上部署。此外,性能增强高度依赖多余的标签数据。为了加快速度和处理数据缺乏造成的问题,已提议知识蒸馏(KD)将从一个模型中汲取的信息转移到另一个模型中。KD通常以所谓的“学生-教师”学习框架为特征,并广泛应用于模型压缩和知识转让。本文是关于KD和S-T学习,近年来正在积极研究。首先,我们旨在解释KD是什么以及它是如何运作的。然后,我们提供了一份关于KD方法的最新进展的全面调查,以及通常用于愿景任务的S-T框架。我们一般地审议了一些基本问题,这些问题一直在推动这一研究领域,并全面概括了研究进展和技术细节。本文是关于KD学习的学习过程,最后,我们系统地分析了目前KD研究方向的现状,以及S-D的学习前景。