The Expectation Maximization (EM) algorithm is of key importance for inference in latent variable models including mixture of regressors and experts, missing observations. This paper introduces a novel EM algorithm, called \texttt{SPIDER-EM}, for inference from a training set of size $n$, $n \gg 1$. At the core of our algorithm is an estimator of the full conditional expectation in the {\sf E}-step, adapted from the stochastic path-integrated differential estimator ({\tt SPIDER}) technique. We derive finite-time complexity bounds for smooth non-convex likelihood: we show that for convergence to an $\epsilon$-approximate stationary point, the complexity scales as $K_{\operatorname{Opt}} (n,\epsilon )={\cal O}(\epsilon^{-1})$ and $K_{\operatorname{CE}}( n,\epsilon ) = n+ \sqrt{n} {\cal O}(\epsilon^{-1} )$, where $K_{\operatorname{Opt}}( n,\epsilon )$ and $K_{\operatorname{CE}}(n, \epsilon )$ are respectively the number of {\sf M}-steps and the number of per-sample conditional expectations evaluations. This improves over the state-of-the-art algorithms. Numerical results support our findings.


翻译:期望最大化( EM) 算法对于潜在变量模型的推断至关重要, 包括递减者和专家的混合, 缺少观察 。 本文介绍了一个新的 EM 算法, 称为\ textt{ PIDER- EM}, 用于从规模为$n, $n\ gg 1 的一组培训中推断 。 在我们算法的核心, 是对 { sf E} 步骤中完全有条件期望的估测符 : 校正路径- 集成差异估量( tt) 技术的调整 。 我们为平滑的非 conx 可能性推出一个新的 EM 算法, 称为\ texttt{ PIDR- EM} 。 我们显示, 趋同 $@ operatorname { (n,\ epslon) 和 $@ potor nual_ nual_ number { { ral_ ral_ rus_ r_ r_ rual_ ad_ r_ rus_ rual_ rus_ rus_ r_ rus_ rus_ r_ rus_ r_ r_ rus_ rus_ r_ r_ r_ rus_ r_ r_ r_ r_ rus_ r_ r_ rus_ r_ rus_ r_ r_ r_ r_ r_ rus_ r_ r_ r_ r_ r_ r_ r_ r_ r_ r___ r_ r_ r____ r_ r_ r_ r_ r_ r_ r___ r_ r_ r_ r_ r_ r_ r_ r_ r_ r_ r_ r_ r_ r_ r_ r_ r_ r_ r_ r_ r_ r_ r_ r_ r_ r_ r_ r_ r_ r_

0
下载
关闭预览

相关内容

区块链白皮书(2020年),60页pdf
专知会员服务
91+阅读 · 2021年1月5日
专知会员服务
50+阅读 · 2020年12月14日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
spinningup.openai 强化学习资源完整
CreateAMind
6+阅读 · 2018年12月17日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
已删除
将门创投
10+阅读 · 2018年5月2日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年1月22日
Implicit Maximum Likelihood Estimation
Arxiv
7+阅读 · 2018年9月24日
Arxiv
4+阅读 · 2018年1月15日
VIP会员
相关资讯
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
spinningup.openai 强化学习资源完整
CreateAMind
6+阅读 · 2018年12月17日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
已删除
将门创投
10+阅读 · 2018年5月2日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员