Within the context of hybrid quantum-classical optimization, gradient descent based optimizers typically require the evaluation of expectation values with respect to the outcome of parameterized quantum circuits. In this work, we explore the consequences of the prior observation that estimation of these quantities on quantum hardware results in a form of stochastic gradient descent optimization. We formalize this notion, which allows us to show that in many relevant cases, including VQE, QAOA and certain quantum classifiers, estimating expectation values with $k$ measurement outcomes results in optimization algorithms whose convergence properties can be rigorously well understood, for any value of $k$. In fact, even using single measurement outcomes for the estimation of expectation values is sufficient. Moreover, in many settings the required gradients can be expressed as linear combinations of expectation values -- originating, e.g., from a sum over local terms of a Hamiltonian, a parameter shift rule, or a sum over data-set instances -- and we show that in these cases $k$-shot expectation value estimation can be combined with sampling over terms of the linear combination, to obtain "doubly stochastic" gradient descent optimizers. For all algorithms we prove convergence guarantees, providing a framework for the derivation of rigorous optimization results in the context of near-term quantum devices. Additionally, we explore numerically these methods on benchmark VQE, QAOA and quantum-enhanced machine learning tasks and show that treating the stochastic settings as hyper-parameters allows for state-of-the-art results with significantly fewer circuit executions and measurements.
翻译:在混合量子古典优化的背景下,基于梯度下降优化通常要求评估参数化量子电路结果的预期值。 在这项工作中,我们探讨了先前观察的结果,即量子硬件的这些数量估计以随机偏差梯度下降优化的形式产生的结果。我们正式确定了这个概念,这使我们能够表明,在许多相关案例中,包括VQE、QAOA和某些量分级者,在优化算法(其趋同性能可以很好地理解任何价值为1美元)中以美元计算的衡量结果估计预期值。事实上,即使使用单一测量结果来估计预期值也足够。此外,在许多环境下,所需的梯度可表现为期望值的线性组合 -- -- 起源于对当地条件的总和、参数转换规则或对数据设置情况的总和 -- -- 我们证明,在这些案例中,美元-速值估计值值值值值值与对线性组合条件的抽样结合,以获得“多度性基质级”QQ级测量结果,估计值是足够的。此外,在许多情况下,所需的梯度梯度梯度梯度测量度测量度测量值测量结果可以作为精确度优化的精确度评估结果。