The Relative Pose problem (RPp) for cameras aims to estimate the relative orientation and translation (pose) given a set of pair-wise feature correspondences between two central and calibrated cameras. The RPp is stated as an optimization problem where the squared, normalized epipolar error is minimized over the set of normalized essential matrices. In this work, we contribute an efficient and complete algorithm based on results from duality theory that is able to certify whether the solution to a RPp instance is the global optimum. Specifically, we present a family of certifiers that is shown to increase the ratio of detected optimal solutions. This set of certifiers is incorporated into an efficient essential matrix estimation pipeline that, given any initial guess for the RPp, refines it iteratively on the product space of 3D rotations and 2-sphere and thereupon, certifies the optimality of the solution. We integrate our fast certifiable pipeline into a robust framework that combines Graduated Non-convexity and the Black-Rangarajan duality between robust functions and line processes. This combination has been shown in the literature to outperform the robustness to outliers provided by approaches based on RANSAC. We proved through extensive experiments on synthetic and real data that the proposed framework provides a fast and robust relative pose estimation. We compare our proposal against the state-of-the-art methods on both accuracy and computational cost, and show that our estimations improve the output of the gold-standard approach for the RPp, the 2-view Bundle-Adjustment. We make the code publicly available \url{https://github.com/mergarsal/FastCertRelPose.git}.


翻译:相对摄像头Pose 问题( Rpp) 旨在估计相对方向和翻译( pos), 这是因为两个中央和校准的相机之间有一套双向特征对应。 RPp 被描述为一个优化问题, 因为在一组标准化基本矩阵中, 平方、 普通的上层错误被最小化。 在这项工作中, 我们贡献了一个基于双性理论结果的高效和完整的算法, 从而能够证明对 RPp 实例的解决方案是否是全球最佳的。 具体地说, 我们展示了一组验证器, 以显示增强检测到的最佳解决方案的比对比。 这组验证器被整合成一个高效的基本矩阵估算管道, 在对 RP2 进行初步猜测的情况下, 反复地改进3D 旋转和 2 缩略图的产品空间, 从而证实解决方案的最佳性。 我们将快速验证的管道整合成一个坚固的框架, 结合了已检测到的NConvertial- Ranga 的精度函数和 NS 直线进程之间的比。 这个组合, 提供了对 Restalal- 的精确度的精确度, 和 Restalal- a labal- labal- labal- labal- labal- 的比 和 lax- preal- preal- preal- preal- prealisalationalationalational- pre- pres 的比 的比 。 通过我们的比 和 提供了一个基于我们的文件 和 和 和 和 和 vicumental- preal- preal- preal- preal- preal- preal- sal- sal- sal- preal- sal- sal- sal- sal- sal- sal- sal- sal- sal- sal- sal- pal- pal- supal- pal- pal- pal- pal- pal- pal- pal- pal- pal- pal- sal- sal- sal- pal- sal- sal- sal- pal- sal- pal- pal- pal- pal-

0
下载
关闭预览

相关内容

专知会员服务
142+阅读 · 2021年3月17日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
【泡泡一分钟】用于平面环境的线性RGBD-SLAM
泡泡机器人SLAM
6+阅读 · 2018年12月18日
CornerNet: Detecting Objects as Paired Keypoints 论文笔记
统计学习与视觉计算组
7+阅读 · 2018年9月27日
【跟踪Tracking】15篇论文+代码 | 中秋快乐~
专知
18+阅读 · 2018年9月24日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Faster R-CNN
数据挖掘入门与实战
4+阅读 · 2018年4月20日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
5+阅读 · 2018年4月13日
VIP会员
相关VIP内容
专知会员服务
142+阅读 · 2021年3月17日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
相关资讯
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
【泡泡一分钟】用于平面环境的线性RGBD-SLAM
泡泡机器人SLAM
6+阅读 · 2018年12月18日
CornerNet: Detecting Objects as Paired Keypoints 论文笔记
统计学习与视觉计算组
7+阅读 · 2018年9月27日
【跟踪Tracking】15篇论文+代码 | 中秋快乐~
专知
18+阅读 · 2018年9月24日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Faster R-CNN
数据挖掘入门与实战
4+阅读 · 2018年4月20日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员