In this paper, we propose a deterministic algorithm that approximates the optimal path cover on weighted undirected graphs. Based on the 1/2-Approximation Path Cover Algorithm by Moran et al., we add a procedure to remove the redundant edges as the algorithm progresses. Our optimized algorithm not only significantly reduces the computation time but also maintains the theoretical guarantee of the original 1/2-Approximation Path Cover Algorithm. To test the time complexity, we conduct numerical tests on graphs with various structures and random weights, from structured ring graphs to random graphs, such as Erdos-Renyi graphs. The tests demonstrate the effectiveness of our proposed algorithm on graphs, especially those with high degree nodes, and the advantages expand as the graph gets larger. Moreover, we also launch tests on various graphs/networks derived from a wide range of real-world problems to suggest the effectiveness and applicability of the proposed algorithm.


翻译:在本文中,我们建议了一种确定性算法,该算法可以与加权非定向图表的最佳路径覆盖相近。根据莫兰等人的1/2-Appractication Path Cover Algorithm,我们添加了一个程序,随着算法的进展,去除多余的边缘。我们优化的算法不仅大大缩短了计算时间,而且还维持了原1/2Appractimation Path Cover Algorithm的理论保证。为了测试时间复杂性,我们用各种结构和随机重量的图表进行数字测试,从结构化环形图到随机图,如Erdos-Renyi图。这些测试显示了我们提议的图表算法的有效性,特别是高节点的图,以及随着图形的扩大而扩大的优势。此外,我们还对从广泛的现实世界问题中得出的各种图表/网络进行了测试,以表明拟议算法的有效性和适用性。

0
下载
关闭预览

相关内容

剑桥大学《数据科学: 原理与实践》课程,附PPT下载
专知会员服务
49+阅读 · 2021年1月20日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
MIT新书《强化学习与最优控制》
专知会员服务
275+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
目标检测中的Consistent Optimization
极市平台
6+阅读 · 2019年4月23日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Arxiv
0+阅读 · 2021年3月16日
Arxiv
0+阅读 · 2021年3月15日
Arxiv
0+阅读 · 2021年3月12日
Arxiv
4+阅读 · 2018年5月24日
VIP会员
相关VIP内容
剑桥大学《数据科学: 原理与实践》课程,附PPT下载
专知会员服务
49+阅读 · 2021年1月20日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
MIT新书《强化学习与最优控制》
专知会员服务
275+阅读 · 2019年10月9日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
目标检测中的Consistent Optimization
极市平台
6+阅读 · 2019年4月23日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Top
微信扫码咨询专知VIP会员