In this paper, we derive a posteriori error estimates for mixed-dimensional elliptic equations exhibiting a hierarchical structure. Exploiting the exterior calculus perspective of such equations, we introduce mixed-dimensional variables and operators, which, together with careful construction of the functional spaces, allow us to recast the set of partial differential equations as a regular linear elliptic problem structure-wise. We therefrom apply the well-established theory of functional a posteriori error estimates to our model to derive guaranteed abstract as well as fully computable upper bounds. Our estimators are tested using three different families of locally-mass conservative methods on synthetic problems and verification benchmarks of flow in fractured porous media. The numerical results support our theoretical findings while showcasing satisfactory effectivity indices.
翻译:在本文中,我们得出了显示等级结构的多维椭圆方程式的事后误差估计。 利用这些方程式的外部微积分视角,我们引入了混合维变量和操作器,这些变量和操作器加上精心构建的功能空间,使我们能够将部分差异方程式重塑为正常的线性椭圆问题结构结构。 我们从中将功能性事后误差估计理论应用到模型中,以得出有保障的抽象和完全可比较的上界。 我们的估测器使用三个不同的家族,即关于合成问题的当地物质保守方法以及支离破碎的多孔媒体流量的核查基准进行测试。 数字结果支持了我们的理论发现,同时展示了令人满意的效果指数。