Within the likes of any highly contagious and unpredictable disease, lies a predictable and attainable growth rate that researchers can find in order to make logistical conclusions about that particular disease and its affected regions' counterparts. The foundation that researchers pull from when studying a particular disease and looking for its growth rate is the Susceptible-Infected-Removed (SIR) model, presented by a series of differential equations. The issue with the SIR model lies not in its complexity, but actually its simplicity and lack of a potentially high-finite amount of factors; the limit being bounded by the amount of data available for that particular factor. Our research involves the application of multiple regressions to pinpoint and identify our Covid lockdown periods, followed by the modification of the SIR model. This involved creating new model approximations such as the time-delayed SIR model and the reinfected SIR model in order to take into account factors such as incubation and reinfection, and get the lowest error discrepancy as possible for our infection rate. We were able to conclude that the more factors that we took into account, our error rate became lower and our results became more accurate. We could also identify outlier Metros and draw certain conclusions on performance level and the reasons behind them. We then moved on to find correlations, if any, between the infection rates and outside factors. We looked at demographic and weather data to demonstrate whether correlations appeared. We found that there are a few factors with high correlations, including graduate education and low temperatures.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2024年3月11日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员