Recently, many researchers have studied strategic games inspired by Schelling's influential model of residential segregation. In this model, agents belonging to $k$ different types are placed at the nodes of a network. Agents can be either stubborn, in which case they will always choose their preferred location, or strategic, in which case they aim to maximize the fraction of agents of their own type in their neighborhood. In the so-called Schelling games inspired by this model, strategic agents are assumed to be similarity-seeking: their utility is defined as the fraction of its neighbors of the same type as itself. In this paper, we introduce a new type of strategic jump game in which agents are instead diversity-seeking: the utility of an agent is defined as the fraction of its neighbors that is of a different type than itself. We show that it is NP-hard to determine the existence of an equilibrium in such games, if some agents are stubborn. However, in trees, our diversity-seeking jump game always admits a pure Nash equilibrium, if all agents are strategic. In regular graphs and spider graphs with a single empty node, as well as in all paths, we prove a stronger result: the game is a potential game, that is, improving response dynamics will always converge to a Nash equilibrium from any initial placement of agents.
翻译:暂无翻译