Given a finite point set $P$ in the plane, a subset $S \subseteq P$ is called an island in $P$ if $conv(S) \cap P = S$. We say that $S\subset P$ is a visible island if the points in $S$ are pairwise visible and $S$ is an island in $P$. The famous Big-line Big-clique Conjecture states that for any $k \geq 3$ and $\ell \geq 4$, there is an integer $n = n(k,\ell)$, such that every finite set of at least $n$ points in the plane contains $\ell$ collinear points or $k$ pairwise visible points. In this paper, we show that this conjecture is false for visible islands, by replacing each point in a Horton set by a triple of collinear points. Hence, there are arbitrarily large finite point sets in the plane with no 4 collinear members and no visible island of size $13$.
翻译:根据飞机上设定的限定点美元,如果以美元计价(S)\ subseteq P$=S美元,则以美元计价。我们说,如果以美元计价的点是双向可见的,以美元计价的,以美元计价的,以美元计价的,以美元计价的,以美元计价的,以美元计价的,以美元计价的,以美元计价的,以美元计价的,以美元计价的,以美元计价的。我们说,如果以美元计价的点是双向可见的,则以美元计价的,则以美元计价的,以美元计价的,以美元计价的,以美元计价的,以美元计价的,以美元计价的,以美元计价的,以美元计价的,以美元计价的,以美元计价的,以美元计价的,以美元计价的,以美元计价的,以美元计价的,以美元计价的,以美元计价的,以美元计价的,以美元计价计价的,以美元计价的,以美元计价的,以美元计价的,以美元计价的,以美元计价的,以美元计价的,以美元计价的,以美元计价的,以美元计价的,以美元计价的,以美元计价的,以美元计价的,以美元计价的,以美元计价的,以美元计价的,以美元计价的,以美元计价的,以美元计价的,以美元计价的,以美元计价的,以美元计价的,以美元计价的,以美元计价的计价的,以美元计价的,以美元计价的,以美元计价。计价,以美元计价的,以美元计价的,以美元计价的,以美元计价。计价,以美元计价,以美元计价。计价的,以美元计价,以美元计价,以美元计价,以美元计价,以美元计价,以美元计价。计价,以美元计价,以美元计价,以美元计价的,以美元计价的,以