In this paper, we consider the following $k$-dispersion problem. Given a set $S$ of $n$ points placed in the plane in a convex position, and an integer $k$ ($0<k<n$), the objective is to compute a subset $S'\subset S$ such that $|S'|=k$ and the minimum distance between a pair of points in $S'$ is maximized. Based on the bounded search tree method we propose an exact fixed-parameter algorithm in $O(2^k(n^2\log n+n(\log^2 n)(\log k)))$ time, for this problem, where $k$ is the parameter. The proposed exact algorithm is better than the current best exact exponential algorithm [$n^{O(\sqrt{k})}$-time algorithm by Akagi et al.,(2018)] whenever $k<c\log^2{n}$ for some constant $c$. We then present an $O(\log{n})$-time $\frac{1}{2\sqrt{2}}$-approximation algorithm for the problem when $k=3$ if the points are given in convex position order.
翻译:在本文中, 我们考虑以下的 $k$ 分散问题 。 考虑到在平面上放置的固定参数值为 $n美元, 而整数为 $0<k> 美元, 目标是计算一个子集 $S'\ susubset S$, 这样可以使 Akagi et al. (2018) 以 $k < c\ log2}n} 美元为固定值的固定参数算法最大化 。 在此问题上, 我们提出一个精确的固定参数算法, 以 $( 2}2\\ log n+ n( log_ 2 n)(\ log k)) 美元计时, 以 美元为参数。 所提议的精确算法比 Akagi et al. (n) $( sqrt}) 和 一对一对一对一对点的时算算法的当前最佳精确速度算法更好 。 只要$k < c\ log2} {n} 我们然后提出 $O\\ lag- conapp $$_ lax ro= max max max max max