We study vertex sparsification for distances, in the setting of planar graphs with distortion: Given a planar graph $G$ (with edge weights) and a subset of $k$ terminal vertices, the goal is to construct an $\varepsilon$-emulator, which is a small planar graph $G'$ that contains the terminals and preserves the distances between the terminals up to factor $1+\varepsilon$. We construct the first $\varepsilon$-emulators for planar graphs of near-linear size $\tilde O(k/\varepsilon^{O(1)})$. In terms of $k$, this is a dramatic improvement over the previous quadratic upper bound of Cheung, Goranci and Henzinger, and breaks below known quadratic lower bounds for exact emulators (the case when $\varepsilon=0$). Moreover, our emulators can be computed in (near-)linear time, which lead to fast $(1+\varepsilon)$-approximation algorithms for basic optimization problems on planar graphs, including multiple-source shortest paths, minimum $(s,t)$-cut, graph diameter, and dynamic distace oracle.
翻译:我们在设定扭曲的平面图时,对距离进行顶峰封闭研究:根据平面图$G$(加边重量)和一个小的美元终端脊椎,目标是建造一个美元瓦列普西隆美元模拟器,这是一个小平面图$G$,包含终端,并将终端之间的距离维持在已知的平面下方弧线下方,直至1美元瓦雷普西隆=0美元。此外,我们可以(近线时间)计算出近线规模的美元(k/\varepsilon_O(1)})平面图。以美元计算,这比过去张、戈兰和亨仁哲的四面图上方框大有惊人的改进,它包含终端终端终端的平面图,以及精确的平面平面图下方线下方线(当美元=0美元的情况下)。此外,我们的模拟器可以在(近线时间)计算出(近线)的美元(k/varepsilon)平面图,包括快速的美元平面平面平面平面平面平面,包括最短的平面平面平面平面平面平面平面平面平面平面,包括最低的平面平面平面平面平面平。