In this paper, we develop a novel high-dimensional regression inference procedure for high-frequency financial data. Unlike usual high-dimensional regression for low-frequency data, we need to additionally handle the time-varying coefficient problem. To accomplish this, we employ the Dantzig selection scheme and apply a debiasing scheme, which provides well-performing unbiased instantaneous coefficient estimators. With these schemes, we estimate the integrated coefficient, and to further account for the sparsity of the beta process, we apply thresholding schemes. We call this Thresholding dEbiased Dantzig Integrated Beta (TEDI Beta). We establish asymptotic properties of the proposed TEDI Beta estimator. In the empirical analysis, we apply the TEDI Beta procedure to analyzing high-dimensional factor models using high-frequency data.
翻译:在本文中,我们为高频金融数据开发了一种新的高维回归推论程序。 与低频数据通常的高维回归程序不同, 我们需要额外处理时间变化系数问题。 为了做到这一点, 我们采用丹兹格选择方案, 并应用一种偏向方案, 提供良好的公正瞬时系数估计器。 我们使用这些方法, 估计集成系数, 并进一步计算贝塔过程的广度。 我们使用阈值方案。 我们称之为“ 振动 dEbiased Dantzig Intig Beta ” (TEDI Beta) (TEDI Beta ) 。 我们建立拟议的TEDI Beta 估计器的无损特性。 在经验分析中, 我们使用TEDI Beta 程序来使用高频数据分析高维要素模型 。