AI safety practitioners invest considerable resources in AI system evaluations, but these investments may be wasted if evaluations fail to realize their impact. This paper questions the core value proposition of evaluations: that they significantly improve our understanding of AI risks and, consequently, our ability to mitigate those risks. Evaluations may fail to improve understanding in six ways, such as risks manifesting beyond the AI system or insignificant returns from evaluations compared to real-world observations. Improved understanding may also not lead to better risk mitigation in four ways, including challenges in upholding and enforcing commitments. Evaluations could even be harmful, for example, by triggering the weaponization of dual-use capabilities or invoking high opportunity costs for AI safety. This paper concludes with considerations for improving evaluation practices and 12 recommendations for AI labs, external evaluators, regulators, and academic researchers to encourage a more strategic and impactful approach to AI risk assessment and mitigation.
翻译:暂无翻译