We propose to adopt statistical regression as the projection operator to enable data-driven learning of the operators in the Mori--Zwanzig formalism. We present a principled method to extract the Markov and memory operators for any regression models. We show that the choice of linear regression results in a recently proposed data-driven learning algorithm based on Mori's projection operator, which is a higher-order approximate Koopman learning method. We show that more expressive nonlinear regression models naturally fill in the gap between the highly idealized and computationally efficient Mori's projection operator and the most optimal yet computationally infeasible Zwanzig's projection operator. We performed numerical experiments and extracted the operators for an array of regression-based projections, including linear, polynomial, spline, and neural-network-based regressions, showing a progressive improvement as the complexity of the regression model increased. Our proposition provides a general framework to extract memory-dependent corrections and can be readily applied to an array of data-driven learning methods for stationary dynamical systems in the literature.
翻译:我们提出采用统计回归作为投影算子,实现 Mori-Zwanzig 形式中算子的数据驱动学习。我们提出了一种原则性方法,用于提取任意回归模型的马尔科夫算子和记忆算子。我们表明线性回归模型的选择会导致基于 Mori 投影算子的一种最近提出的数据驱动学习算法,这是一种高阶近似 Koopman 学习方法。我们表明更具表达力的 nonlinear 回归模型自然填补了理想化又计算效率高的 Mori 投影算子与最优但计算不可行的 Zwanzig 投影算子之间的差距。我们进行了数值实验,并提取了一系列基于回归的投影算子的算子,包括线性、多项式、样条和神经网络回归,结果显示随着回归模型复杂性的增加,算子的性能逐渐改善。我们的提议提供了一种提取记忆依赖性修正的通用框架,并可轻松应用于文献中的一系列数据驱动学习方法,用于稳态动力学系统。