Due to high annotation costs, making the best use of existing human-created training data is an important research direction. We, therefore, carry out a systematic evaluation of transferability of BERT-based neural ranking models across five English datasets. Previous studies focused primarily on zero-shot and few-shot transfer from a large dataset to a dataset with a small number of queries. In contrast, each of our collections has a substantial number of queries, which enables a full-shot evaluation mode and improves reliability of our results. Furthermore, since source datasets licences often prohibit commercial use, we compare transfer learning to training on pseudo-labels generated by a BM25 scorer. We find that training on pseudo-labels -- possibly with subsequent fine-tuning using a modest number of annotated queries -- can produce a competitive or better model compared to transfer learning. However, there is a need to improve the stability and/or effectiveness of the few-shot training, which, in some cases, can degrade performance of a pretrained model.


翻译:由于注解成本高,最佳利用现有人类创造的培训数据是一个重要的研究方向。因此,我们系统地评估了基于BERT的神经等级模型在五个英国数据集中的可转让性。以前的研究主要侧重于零点和几发从大型数据集转移到数据集,但查询数量少。相比之下,我们收集的每份都有大量的查询,使得能够采用全速评价模式并提高我们结果的可靠性。此外,由于源数据集许可证常常禁止商业使用,我们把学习与一个BB25计分器生成的假标签培训进行比较。我们发现,假标签培训 -- -- 可能随后使用少量附加说明的查询进行微调 -- -- 能够产生一种与转移学习相比的竞争性或更好的模型。然而,需要提高微量培训的稳定性和(或)效力,在某些情况下,这可以降低预先培训的模式的性能。

0
下载
关闭预览

相关内容

MIT-深度学习Deep Learning State of the Art in 2020,87页ppt
专知会员服务
61+阅读 · 2020年2月17日
开源书:PyTorch深度学习起步
专知会员服务
50+阅读 · 2019年10月11日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Arxiv
6+阅读 · 2019年9月4日
Arxiv
9+阅读 · 2019年4月19日
Arxiv
4+阅读 · 2019年2月18日
Arxiv
5+阅读 · 2018年1月18日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
相关论文
Top
微信扫码咨询专知VIP会员