In this paper we propose a new time-varying econometric model, called Time-Varying Poisson AutoRegressive with eXogenous covariates (TV-PARX), suited to model and forecast time series of counts. {We show that the score-driven framework is particularly suitable to recover the evolution of time-varying parameters and provides the required flexibility to model and forecast time series of counts characterized by convoluted nonlinear dynamics and structural breaks.} We study the asymptotic properties of the TV-PARX model and prove that, under mild conditions, maximum likelihood estimation (MLE) yields strongly consistent and asymptotically normal parameter estimates. Finite-sample performance and forecasting accuracy are evaluated through Monte Carlo simulations. The empirical usefulness of the time-varying specification of the proposed TV-PARX model is shown by analyzing the number of new daily COVID-19 infections in Italy and the number of corporate defaults in the US.
翻译:在本文中,我们提出了一个新的时间变化计量模型,称为“时间变化式Poisson Aut Regrestition ” (TV-PARX),适合模型和预测时间序列计数。 {我们表明,以分数驱动的框架特别适合恢复时间变化参数的演变,并为以混杂的非线性动态和结构间断为特点的计数的模型和预测时间序列提供了必要的灵活性。}我们研究了电视-PARX模型的无症状特性,并证明,在温和条件下,最大可能性估计(MLE)产生非常一致和零星正常的参数估计数。通过蒙特卡洛模拟评估了精度和精度。拟议的电视-PARX模型时间变化规格的经验效用是通过分析意大利每天新增的COVID-19感染数量和美国的公司违约数量来显示的。