Learning from Demonstration (LfD) algorithms have shown promising results in robotic manipulation tasks, but their vulnerability to offline universal perturbation attacks remains underexplored. This paper presents a comprehensive study of adversarial attacks on both classic and recently proposed algorithms, including Behavior Cloning (BC), LSTM-GMM, Implicit Behavior Cloning (IBC), Diffusion Policy (DP), and Vector-Quantizied Behavior Transformer (VQ-BET). We study the vulnerability of these methods to universal adversarial perturbations. Our experiments on several simulated robotic manipulation tasks reveal that most of the current methods are highly vulnerable to adversarial perturbations. We also show that these attacks are often transferable across algorithms, architectures, and tasks, raising concerning security vulnerabilities to black-box attacks. To the best of our knowledge, we are the first to present a systematic study of the vulnerabilities of different LfD algorithms to both white-box and black-box attacks. Our findings highlight the vulnerabilities of modern BC algorithms, paving the way for future work in addressing such limitations.
翻译:暂无翻译