Constraining the approach direction of grasps is important when picking objects in confined spaces, such as when emptying a shelf. Yet, such capabilities are not available in state-of-the-art data-driven grasp sampling methods that sample grasps all around the object. In this work, we address the specific problem of training approach-constrained data-driven grasp samplers and how to generate good grasping directions automatically. Our solution is GoNet: a generative grasp sampler that can constrain the grasp approach direction to lie close to a specified direction. This is achieved by discretizing SO(3) into bins and training GoNet to generate grasps from those bins. At run-time, the bin aligning with the second largest principal component of the observed point cloud is selected. GoNet is benchmarked against GraspNet, a state-of-the-art unconstrained grasp sampler, in an unconfined grasping experiment in simulation and on an unconfined and confined grasping experiment in the real world. The results demonstrate that GoNet achieves higher success-over-coverage in simulation and a 12%-18% higher success rate in real-world table-picking and shelf-picking tasks than the baseline.
翻译:当在封闭空间中选择对象时,例如空出架子时,控制抓取的方法方向很重要。 然而, 样本捕捉到该对象周围所有样本的最先进的数据驱动的抓取抽样方法没有这种能力。 在这项工作中, 我们处理培训方法受数据驱动的抓取取样员的具体问题, 以及如何自动生成良好的抓取方向。 我们的解决方案是 GoNet: 一个基因化抓取取样器, 可以将抓取方法的方向限制在接近指定方向的地方。 这是通过将SO(3)分解成垃圾箱和训练GoNet从这些垃圾箱中获取抓抓取而实现的。 在运行时, 选择了与所观测到的点云中第二大主要组成部分对齐的文件夹。 GoNet是参照GraspNet这个最先进的手动的抓取取样员, 在模拟和在现实世界中一个不固定的抓取实验中, 在一个松散和有限的捉取实验中, 其结果显示GoNet在模拟中取得了更高的成功覆盖, 在真实的表架和选择基准中, 12- 18 % 的成功率 。</s>