In this work, we introduce a new approach for statistical quantification of differential privacy in a black box setting. We present estimators and confidence intervals for the optimal privacy parameter of a randomized algorithm $A$, as well as other key variables (such as the "data-centric privacy level"). Our estimators are based on a local characterization of privacy and in contrast to the related literature avoid the process of "event selection" - a major obstacle to privacy validation. This makes our methods easy to implement and user-friendly. We show fast convergence rates of the estimators and asymptotic validity of the confidence intervals. An experimental study of various algorithms confirms the efficacy of our approach.
翻译:在这项工作中,我们引入了在黑盒环境中对不同隐私进行统计量化的新方法。我们展示了随机算法美元的最佳隐私参数以及其他关键变量(如“以数据为中心的隐私水平 ” ) 的估测器和信任间隔。我们的估测器基于对隐私的本地定性,与相关文献相比,避免了“活动选择”过程 — — 隐私验证的一个主要障碍。这使得我们的方法易于实施,便于用户使用。我们展示了估测器快速趋同率和信任间隔的无损有效性。对各种算法的实验研究证实了我们的方法的有效性。