Head pose estimation is a crucial challenge for many real-world applications, such as attention and human behavior analysis. This paper aims to estimate head pose from a single image by applying notions of network curvature. In the real world, many complex networks have groups of nodes that are well connected to each other with significant functional roles. Similarly, the interactions of facial landmarks can be represented as complex dynamic systems modeled by weighted graphs. The functionalities of such systems are therefore intrinsically linked to the topology and geometry of the underlying graph. In this work, using the geometric notion of Ollivier-Ricci curvature (ORC) on weighted graphs as input to the XGBoost regression model, we show that the intrinsic geometric basis of ORC offers a natural approach to discovering underlying common structure within a pool of poses. Experiments on the BIWI, AFLW2000 and Pointing'04 datasets show that the ORC_XGB method performs well compared to state-of-the-art methods, both landmark-based and image-only.
翻译:对于许多真实世界的应用,例如注意力和人类行为分析,头部的构成估计是许多真实世界应用的关键挑战。 本文的目的是通过应用网络曲线概念从单一图像中估计头部的形状。 在现实世界中,许多复杂的网络有相互连接的节点组合,具有重要的功能作用。 同样, 面部标志的相互作用也可以作为以加权图示模型的复杂动态系统来表示。 因此, 这些系统的功能与底图的地形学和几何性有着内在的联系。 在这项工作中, 使用Ollivier- Ricccurvation (ORC) 的几何概念, 将加权图表作为 XGBoost 回归模型的输入。 我们显示, ORC 的内在几何基础提供了一种自然方法, 用以发现一个组合中的基本共同结构。 在 BIWI、 AFLW2000 和“ 点” 04 数据集上的实验显示, ORC_ XGB 方法与最新方法相比表现良好, 两者都是以里程碑为基础和仅以图像为基础的。