项目名称: 多粒度超启发计算方法研究
项目编号: No.61473263
项目类型: 面上项目
立项/批准年度: 2015
项目学科: 其他
项目作者: 郑宇军
作者单位: 浙江工业大学
项目金额: 80万元
中文摘要: 元启发方法是针对问题空间进行搜索的算法,超启发方法则是针对算法空间进行搜索的算法。但目前超启发方法研究主要是面向算子类型的单一粒度的优化。本项目将首先对超启发的算子粒度进行垂直扩展,研究更宏观的面向种群协同进化算子的以及更微观的面向算子部件的超启发优化方法;再对超启发的要素内容进行水平扩展,分别研究面向算法核心要素(包括算子、控制参数、拓扑结构等)以及面向算法扩展要素(包括约束处理机制、模糊处理机制和多目标权衡机制等)的超启发优化方法。对不同要素及其不同粒度上的超启发方法进行有效融合,构造多层次、多视角粒结构上的超启发框架,为超启发计算建立新的模型范式。设计问题驱动的超启发算法开发系统,支持面向具体问题的超启发粒度选择和算法生成,从根本上提升求解大规模复杂优化问题的能力。
中文关键词: 智能优化算法;超启发式算法;算法设计
英文摘要: Meta-heuristics are algorithms searching in the space of problem solutions, while hyper-heuristics are algorithms searching in the space of meta-heuristic algorithms. Current researches on hyper-heuristics mainly focus on the optimization of algorithmic operators at a single-granularity level. This project will first vertically extend the granularity level of hyper-heuristics to include both higher multi-population coevolution operators and lower operator components, and then horizontally extend the granularity level to include both kernel algorithmic elements (such as operators, control parameters, and topologies) and expanded algorithmic elements (such as mechanisms for handling constraints, fuzzy variables, and multiple objectives). By integrating hyper-heuristics on different algorithmic elements and at different granularity levels, the project will construct a multi-level and multi-view hyper-heuristic framework, and thus establish a new computation paradigm for hyper-heuristic computation. Finally the research will develop a problem-driven hyper-heuristic algorithm development system to support granularity selection and concrete algorithmic program generation, and thus improve the capability of large-scale complex problem solving fundamentally.
英文关键词: Intelligent Optimization Algorithm;Hyper-Heuristics;Algorithm Design