Nonparametric maximum likelihood estimators (MLEs) in inverse problems often have non-normal limit distributions, like Chernoff's distribution. However, if one considers smooth functionals of the model, with corresponding functionals of the MLE, one gets normal limit distributions and faster rates of convergence. We demonstrate this for a model for the incubation time of a disease. The usual approach in the latter models is to use parametric distributions, like Weibull and gamma distributions, which leads to inconsistent estimators. Smoothed bootstrap methods are discussed for constructing confidence intervals. The classical bootstrap, based on the nonparametric MLE itself, has been proved to be inconsistent in this situation.
翻译:在反向问题中,非对称最大概率估测器(MLEs)往往有非正常的极限分布,如Chernoff的分布。然而,如果考虑到模型的顺利功能,加上MLE的相应功能,人们就会得到正常的极限分布和更快的趋同率。我们用这个模型来证明疾病孕育时间的模型。在后一种模型中,通常的做法是使用参数分布,如Weibull和伽马分布,这导致了不一致的估测器。在构建信任间隔时,人们会讨论滑动的靴套方法。在这种情况下,基于非对称 MLE本身的经典靴套被证明是不一致的。