This paper covers predicting high-resolution electricity peak demand features given lower-resolution data. This is a relevant setup as it answers whether limited higher-resolution monitoring helps to estimate future high-resolution peak loads when the high-resolution data is no longer available. That question is particularly interesting for network operators considering replacing high-resolution monitoring predictive models due to economic considerations. We propose models to predict half-hourly minima and maxima of high-resolution (every minute) electricity load data while model inputs are of a lower resolution (30 minutes). We combine predictions of generalized additive models (GAM) and deep artificial neural networks (DNN), which are popular in load forecasting. We extensively analyze the prediction models, including the input parameters' importance, focusing on load, weather, and seasonal effects. The proposed method won a data competition organized by Western Power Distribution, a British distribution network operator. In addition, we provide a rigorous evaluation study that goes beyond the competition frame to analyze the models' robustness. The results show that the proposed methods are superior to the competition benchmark concerning the out-of-sample root mean squared error (RMSE). This holds regarding the competition month and the supplementary evaluation study, which covers an additional eleven months. Overall, our proposed model combination reduces the out-of-sample RMSE by 57.4\% compared to the benchmark.


翻译:本文涵盖预测高分辨率电峰需求特征的模型,其中给出了分辨率较低的数据。这是一个相关的设置,因为它回答了有限的高分辨率监测是否有助于在高分辨率数据不再可用时估计未来高分辨率峰值负荷的问题。这个问题对于网络运营商出于经济考虑考虑考虑取代高分辨率监测预测模型尤其有趣。我们提出了预测半个小时高分辨率(每分钟)电荷数据模型和峰值模型的模型,而模型输入的分辨率较低(30分钟)。我们结合了对通用添加模型(GAM)和深层人工神经网络(DNN)的预测,这些模型在载荷预测中很受欢迎。我们广泛分析了预测模型,包括输入参数的重要性,重点是负荷、天气和季节效应。拟议方法赢得了由英国配送网络运营商Wester Pow Power Sulvement组织的数据竞争。此外,我们提供了一项严格的评价研究,该研究超越竞争框架,分析了模型的强度。结果显示,拟议的方法优于关于负重根中值平均误差的竞争基准。我们广泛分析了预测模型(ARNNNNN),这比整个竞争基准要长一个11个月。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Analysis of Distributed Deep Learning in the Cloud
Arxiv
0+阅读 · 2022年12月20日
Arxiv
57+阅读 · 2022年1月5日
Arxiv
30+阅读 · 2021年7月7日
Arxiv
64+阅读 · 2021年6月18日
Arxiv
37+阅读 · 2021年2月10日
Arxiv
27+阅读 · 2020年12月24日
VIP会员
相关VIP内容
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关论文
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员