Smart healthcare systems (SHSs) are providing fast and efficient disease treatment leveraging wireless body sensor networks (WBSNs) and implantable medical devices (IMDs)-based internet of medical things (IoMT). In addition, IoMT-based SHSs are enabling automated medication, allowing communication among myriad healthcare sensor devices. However, adversaries can launch various attacks on the communication network and the hardware/firmware to introduce false data or cause data unavailability to the automatic medication system endangering the patient's life. In this paper, we propose SHChecker, a novel threat analysis framework that integrates machine learning and formal analysis capabilities to identify potential attacks and corresponding effects on an IoMT-based SHS. Our framework can provide us with all potential attack vectors, each representing a set of sensor measurements to be altered, for an SHS given a specific set of attack attributes, allowing us to realize the system's resiliency, thus the insight to enhance the robustness of the model. We implement SHChecker on a synthetic and a real dataset, which affirms that our framework can reveal potential attack vectors in an IoMT system. This is a novel effort to formally analyze supervised and unsupervised machine learning models for black-box SHS threat analysis.
翻译:智能医疗系统(SHS)正在利用无线身体传感器网络(WBSNS)和植入式医疗装置(IMD)的互联网,提供快速高效的疾病治疗,利用无线身体传感器网络(WBSNS)和基于医疗物品的可移植医疗装置(IMD),此外,基于IOMT的SHS正在提供自动化药物,允许各种医疗传感器进行通信;然而,对手可以对通信网络和硬件/硬件系统发动各种攻击,以引入虚假数据,或导致自动医疗系统无法获得数据,从而危及患者生命。在本文中,我们提议SHCWCWer,这是一个新颖的威胁分析框架,将机器学习和正式分析能力结合起来,以查明对基于IOMT的SHS的潜在攻击和相应影响。我们的框架可以为我们提供所有潜在的攻击矢量,每个代表一系列感应改变的传感器测量,以便给一个具有特定攻击特性的SHS系统带来一系列攻击特性,从而使我们能够认识系统的弹性,从而增强模型的坚固度。我们在一个合成和真实的数据集上安装SHCWCRE,确认我们的框架可以在一个黑的IOMT系统上显示潜在的威胁分析。