The advent of dedicated Deep Learning (DL) accelerators and neuromorphic processors has brought on new opportunities for applying both Deep and Spiking Neural Network (SNN) algorithms to healthcare and biomedical applications at the edge. This can facilitate the advancement of medical Internet of Things (IoT) systems and Point of Care (PoC) devices. In this paper, we provide a tutorial describing how various technologies including emerging memristive devices, Field Programmable Gate Arrays (FPGAs), and Complementary Metal Oxide Semiconductor (CMOS) can be used to develop efficient DL accelerators to solve a wide variety of diagnostic, pattern recognition, and signal processing problems in healthcare. Furthermore, we explore how spiking neuromorphic processors can complement their DL counterparts for processing biomedical signals. The tutorial is augmented with case studies of the vast literature on neural network and neuromorphic hardware as applied to the healthcare domain. We benchmark various hardware platforms by performing a sensor fusion signal processing task combining electromyography (EMG) signals with computer vision. Comparisons are made between dedicated neuromorphic processors and embedded AI accelerators in terms of inference latency and energy. Finally, we provide our analysis of the field and share a perspective on the advantages, disadvantages, challenges, and opportunities that various accelerators and neuromorphic processors introduce to healthcare and biomedical domains.


翻译:专门的深层学习加速器和神经形态处理器的出现,为在边缘应用深层和Spiking神经网络(SNN)算法对医疗和生物医学应用带来了新的机会。这可以促进物质(IOT)系统和护理点(POC)设备医学互联网的进步。在本文件中,我们提供了一个指导性说明如何利用各种技术,包括新兴的隐性装置、现场可编程门阵列和补充金属氧化物半导体(CMOS)来开发高效的DL加速器,以解决医疗领域各种诊断、模式识别和信号处理问题。此外,我们探索了神经形态处理器和护理点(POC)设备等医疗互联网设备如何补充DL对等处理生物形态信号的医学互联网。我们提供了对神经网络和神经形态硬件应用领域的大量文献的案例研究。我们为各种硬件平台设定了一种感应感应聚合信号处理任务,将电路透半导信号与计算机视野相结合。 在专门的神经形态分析领域和内嵌化机中,在专门的神经形态分析领域和内置的优势方面进行了比较。

0
下载
关闭预览

相关内容

信号处理期刊采用了理论与实践的各个方面的信号处理。它以原始研究工作,教程和评论文章以及实际发展情况为特色。它旨在将知识和经验快速传播给从事信号处理研究,开发或实际应用的工程师和科学家。该期刊涵盖的主题领域包括:信号理论;随机过程; 检测和估计;光谱分析;过滤;信号处理系统;软件开发;图像处理; 模式识别; 光信号处理;数字信号处理; 多维信号处理;通信信号处理;生物医学信号处理;地球物理和天体信号处理;地球资源信号处理;声音和振动信号处理;数据处理; 遥感; 信号处理技术;雷达信号处理;声纳信号处理;工业应用;新的应用程序。 官网地址:http://dblp.uni-trier.de/db/journals/sigpro/
【CMU】最新深度学习课程, Introduction to Deep Learning
专知会员服务
36+阅读 · 2020年9月12日
Python图像处理,366页pdf,Image Operators Image Processing in Python
神经网络的拓扑结构,TOPOLOGY OF DEEP NEURAL NETWORKS
专知会员服务
31+阅读 · 2020年4月15日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
人工智能 | 国际会议信息10条
Call4Papers
5+阅读 · 2018年12月18日
深度学习医学图像分析文献集
机器学习研究会
18+阅读 · 2017年10月13日
最佳实践:深度学习用于自然语言处理(三)
待字闺中
3+阅读 · 2017年8月20日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Accelerated Methods for Deep Reinforcement Learning
Arxiv
6+阅读 · 2019年1月10日
Arxiv
3+阅读 · 2017年11月20日
VIP会员
相关VIP内容
【CMU】最新深度学习课程, Introduction to Deep Learning
专知会员服务
36+阅读 · 2020年9月12日
Python图像处理,366页pdf,Image Operators Image Processing in Python
神经网络的拓扑结构,TOPOLOGY OF DEEP NEURAL NETWORKS
专知会员服务
31+阅读 · 2020年4月15日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
相关资讯
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
人工智能 | 国际会议信息10条
Call4Papers
5+阅读 · 2018年12月18日
深度学习医学图像分析文献集
机器学习研究会
18+阅读 · 2017年10月13日
最佳实践:深度学习用于自然语言处理(三)
待字闺中
3+阅读 · 2017年8月20日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员