Federated Learning (FL) recently emerges as a paradigm to train a global machine learning model across distributed clients without sharing raw data. Knowledge Graph (KG) embedding represents KGs in a continuous vector space, serving as the backbone of many knowledge-driven applications. As a promising combination, federated KG embedding can fully take advantage of knowledge learned from different clients while preserving the privacy of local data. However, realistic problems such as data heterogeneity and knowledge forgetting still remain to be concerned. In this paper, we propose FedLU, a novel FL framework for heterogeneous KG embedding learning and unlearning. To cope with the drift between local optimization and global convergence caused by data heterogeneity, we propose mutual knowledge distillation to transfer local knowledge to global, and absorb global knowledge back. Moreover, we present an unlearning method based on cognitive neuroscience, which combines retroactive interference and passive decay to erase specific knowledge from local clients and propagate to the global model by reusing knowledge distillation. We construct new datasets for assessing realistic performance of the state-of-the-arts. Extensive experiments show that FedLU achieves superior results in both link prediction and knowledge forgetting.


翻译:最近,联邦学习联盟(FL)作为一个范例,在不分享原始数据的情况下,在分布客户中培训全球机器学习模式,而没有共享原始数据。知识图(KG)嵌入是一个连续矢量空间中的KG,是许多知识驱动的应用的支柱。作为一个有希望的组合,联盟的KG嵌入可以充分利用从不同客户学到的知识,同时保护当地数据的隐私。然而,数据异质性和忘记知识等现实问题仍然值得关注。在本文件中,我们提议FDLU,这是一个新的FLU框架,用于多样化的KG嵌入学习和不学习。为了应对由数据异质性导致的本地优化和全球趋同之间的漂移,我们提议共同进行知识蒸,将本地知识转移到全球,吸收全球知识。此外,我们提出一种基于认知神经科学的不学习方法,将追溯性干扰和被动衰减结合起来,以删除当地客户的具体知识,并通过再利用知识蒸馏向全球模型传播。我们为评估当前艺术作品的实际表现而设计新的FDLU,我们建立新的数据集。广泛的实验表明,美联想既要忘记了预测和知识的高级结果。</s>

0
下载
关闭预览

相关内容

通过学习、实践或探索所获得的认识、判断或技能。
专知会员服务
123+阅读 · 2020年9月8日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Arxiv
20+阅读 · 2022年10月10日
Knowledge Embedding Based Graph Convolutional Network
Arxiv
24+阅读 · 2021年4月23日
Arxiv
101+阅读 · 2020年3月4日
Heterogeneous Deep Graph Infomax
Arxiv
12+阅读 · 2019年11月19日
Efficiently Embedding Dynamic Knowledge Graphs
Arxiv
14+阅读 · 2019年10月15日
Domain Representation for Knowledge Graph Embedding
Arxiv
14+阅读 · 2019年9月11日
VIP会员
相关资讯
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关论文
Arxiv
20+阅读 · 2022年10月10日
Knowledge Embedding Based Graph Convolutional Network
Arxiv
24+阅读 · 2021年4月23日
Arxiv
101+阅读 · 2020年3月4日
Heterogeneous Deep Graph Infomax
Arxiv
12+阅读 · 2019年11月19日
Efficiently Embedding Dynamic Knowledge Graphs
Arxiv
14+阅读 · 2019年10月15日
Domain Representation for Knowledge Graph Embedding
Arxiv
14+阅读 · 2019年9月11日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员