Image translation based on a generative adversarial network (GAN-IT) is a promising method for the precise localization of abnormal regions in chest X-ray images (AL-CXR) even without pixel-level annotation. However, heterogeneous unpaired datasets undermine existing methods to extract key features and distinguish normal from abnormal cases, resulting in inaccurate and unstable AL-CXR. To address this problem, we propose an improved two-stage GAN-IT involving registration and data augmentation. For the first stage, we introduce an advanced deep-learning-based registration technique that virtually and reasonably converts unpaired data into paired data for learning registration maps, by sequentially utilizing linear-based global and uniform coordinate transformation and AI-based non-linear coordinate fine-tuning. This approach enables the independent and complex coordinate transformation of each detailed location of the lung while recognizing the entire lung structure, thereby achieving higher registration performance with resolving inherent artifacts caused by unpaired conditions. For the second stage, we apply data augmentation to diversify anomaly locations by swapping the left and right lung regions on the uniform registered frames, further improving the performance by alleviating imbalance in data distribution showing left and right lung lesions. The proposed method is model agnostic and shows consistent AL-CXR performance improvement in representative AI models. Therefore, we believe GAN-IT for AL-CXR can be clinically implemented by using our basis framework, even if learning data are scarce or difficult for the pixel-level disease annotation.


翻译:基于基因对抗网络(GAN-IT)的图像翻译是一个很有希望的方法,即使没有像素级的注释,也能精确地将胸前X射线图像(AL-CXR)中的异常区域本地化,即使没有像素级的注释,但混杂的无线数据集会破坏现有方法,以提取关键特征并区分正常和异常情况,导致AL-CXR不准确和不稳定。为解决这一问题,我们建议改进两阶段GAN-IT,包括登记和数据增强。在第一阶段,我们采用先进的深层次的基于学习的登记技术,将无线数据虚拟和合理地转换成配对数据,用于学习登记地图,按顺序使用基于线性的全球统一协调转换和基于AI的非线性化的转换和基于AI的非线性能协调细调。这种方法使现有方法能够独立和复杂地协调肺部每个详细地点的转变,同时承认整个肺部结构,从而实现更高的注册性能,解决由不适应性条件造成的固有文物。在第二阶段,我们采用数据增强数据多样性的方法使左肺部和右肺部区域互换成对口数据,进一步改进了AS级的运行分布分布分布分布,我们通过测试分析分析分析分析分析分析分析分析分析分析分析分析分析分析分析分析分析分析分析方法,以显示。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
VIP会员
相关VIP内容
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员