Thanks to breakthroughs in AI and Deep learning methodology, Computer vision techniques are rapidly improving. Most computer vision applications require sophisticated image segmentation to comprehend what is image and to make an analysis of each section easier. Training deep learning networks for semantic segmentation required a large amount of annotated data, which presents a major challenge in practice as it is expensive and labor-intensive to produce such data. The paper presents 1. Self-supervised techniques to boost semantic segmentation performance using multi-task learning with Depth prediction and Surface Normalization . 2. Performance evaluation of the different types of weighing techniques (UW, Nash-MTL) used for Multi-task learning. NY2D dataset was used for performance evaluation. According to our evaluation, the Nash-MTL method outperforms single task learning(Semantic Segmentation).
翻译:由于AI和深层学习方法的突破,计算机视觉技术正在迅速改善,大多数计算机视觉应用都需要复杂的图像分解,以了解什么是图像,并使每一部分的分析更加容易;为语义分解而培训深层学习网络需要大量附加说明的数据,这在实践上是一个重大挑战,因为生成这类数据需要花费昂贵和劳动密集型。论文介绍了1. 利用多任务学习和深度预测和地表正常化促进语义分解功能的自监督技术。2. 对多种任务学习所使用的不同称重技术(UW、Nash-MTL)的绩效评估。NY2D数据集用于绩效评估。根据我们的评估,Nash-MTL方法超越了单项任务学习(语言分解)。