It is seen that there is enormous potential to leverage powerful deep learning methods in the emerging field of urban digital twins. It is particularly in the area of intelligent road inspection where there is currently limited research and data available. To facilitate progress in this field, we have developed a well-labeled road pothole dataset named Urban Digital Twins Intelligent Road Inspection (UDTIRI) dataset. We hope this dataset will enable the use of powerful deep learning methods in urban road inspection, providing algorithms with a more comprehensive understanding of the scene and maximizing their potential. Our dataset comprises 1000 images of potholes, captured in various scenarios with different lighting and humidity conditions. Our intention is to employ this dataset for object detection, semantic segmentation, and instance segmentation tasks. Our team has devoted significant effort to conducting a detailed statistical analysis, and benchmarking a selection of representative algorithms from recent years. We also provide a multi-task platform for researchers to fully exploit the performance of various algorithms with the support of UDTIRI dataset.
翻译:在城市数字孪生领域中,利用强大的深度学习方法具有巨大潜力。而在智能路面检查领域,目前可用的研究和数据非常有限。为了促进该领域的进展,我们开发了一个名为‘城市数字孪生智能路面检查’(UDTIRI)的数据集,用于道路坑洞检测。我们希望此数据集将能够支持深度学习方法在城市道路检查中的应用,为算法提供更全面的场景理解并最大化其潜力。我们的数据集包括1000张坑洞图像,这些图像以不同的光照和湿度条件下的各种场景拍摄。我们的目的是将此数据集用于物体检测、语义分割和实例分割等任务。我们的团队花费了大量的精力进行详细的统计分析,并对过去几年的一些代表性算法进行了基准测试。我们还提供了一个多任务平台,使研究人员能够充分利用UDTIRI数据集的各种算法性能。