Georeferenced compositional data are prominent in many scientific fields and in spatial statistics. This work addresses the problem of proposing models and methods to analyze and predict, through kriging, this type of data. To this purpose, a novel class of transformations, named the Isometric $\alpha$-transformation ($\alpha$-IT), is proposed, which encompasses the traditional Isometric Log-Ratio (ILR) transformation. It is shown that the ILR is the limit case of the $\alpha$-IT as $\alpha$ tends to 0 and that $\alpha=1$ corresponds to a linear transformation of the data. Unlike the ILR, the proposed transformation accepts 0s in the compositions when $\alpha>0$. Maximum likelihood estimation of the parameter $\alpha$ is established. Prediction using kriging on $\alpha$-IT transformed data is validated on synthetic spatial compositional data, using prediction scores computed either in the geometry induced by the $\alpha$-IT, or in the simplex. Application to land cover data shows that the relative superiority of the various approaches w.r.t. a prediction objective depends on whether the compositions contained any zero component. When all components are positive, the limit cases (ILR or linear transformations) are optimal for none of the considered metrics. An intermediate geometry, corresponding to the $\alpha$-IT with maximum likelihood estimate, better describes the dataset in a geostatistical setting. When the amount of compositions with 0s is not negligible, some side-effects of the transformation gets amplified as $\alpha$ decreases, entailing poor kriging performances both within the $\alpha$-IT geometry and for metrics in the simplex.


翻译:地理参照的构成数据在许多科学领域和空间统计中十分突出。 这项工作解决了提出模型和方法以通过Kriging分析和预测这类数据的问题。 为此,提议了新型的转换类别,名为Isomat $\alpha$- transformation ($\alpha$-IT), 包括传统的Isology Log- Ratio(ILR) 转换。 显示ILR是alpha$- IT的极限案例, 以美元计算为 $\alpha$, 美元=1$ 与数据线性转换相对。 与ILR不同的是, 提议的转换在组成中, 以美元为正数, 以正数计算, 以正数计算, 以正数计算, 以美元计算中值计算, 以美元计算, 以美元计算, 以美元表示数据线性 。 与陆地数据相比, 以美元 的相对优度值表示, 以正数表示, 数 内 内 内 内 内 内 的 直径值 数 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 。 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值

0
下载
关闭预览

相关内容

【图与几何深度学习】Graph and geometric deep learning,49页ppt
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
异常检测论文大列表:方法、应用、综述
专知
126+阅读 · 2019年7月15日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
Type-augmented Relation Prediction in Knowledge Graphs
Arxiv
3+阅读 · 2014年10月9日
VIP会员
相关资讯
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
异常检测论文大列表:方法、应用、综述
专知
126+阅读 · 2019年7月15日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
Top
微信扫码咨询专知VIP会员