General-purpose language models have demonstrated impressive capabilities, performing on par with state-of-the-art approaches on a range of downstream natural language processing (NLP) tasks and benchmarks when inferring instructions from very few examples. Here, we evaluate the multilingual skills of the GPT and T5 models in conducting multi-class classification on non-English languages without any parameter updates. We show that, given a few English examples as context, pre-trained language models can predict not only English test samples but also non-English ones. Finally, we find the in-context few-shot cross-lingual prediction results of language models are significantly better than random prediction, and they are competitive compared to the existing state-of-the-art cross-lingual models.
翻译:通用语文模式表现出了令人印象深刻的能力,在从少数例子中推断指示时,在一系列下游自然语文处理(NLP)任务和基准方面,与最先进的方法一样,在一系列下游自然语文处理(NLP)任务和基准方面表现得令人印象深刻。在这里,我们评估了GPT和T5模式在对非英语语言进行多级分类而无任何参数更新方面的多语种技能。我们表明,从一些英文实例来看,预先培训的语言模式不仅可以预测英语测试样本,还可以预测非英语样本。最后,我们发现语言模式在文本中少见的跨语言预测结果比随机预测要好得多,而且与现有的最先进的跨语言模式相比,它们具有竞争力。