We give a probabilistic analysis of the unit-demand Euclidean capacitated vehicle routing problem in the random setting, where the input distribution consists of $n$ unit-demand customers modeled as independent, identically distributed uniform random points in the two-dimensional plane. The objective is to visit every customer using a set of routes of minimum total length, such that each route visits at most $k$ customers, where $k$ is the capacity of a vehicle. All of the following results are in the random setting and hold asymptotically almost surely. The best known polynomial-time approximation for this problem is the iterated tour partitioning (ITP) algorithm, introduced in 1985 by Haimovich and Rinnooy Kan. They showed that the ITP algorithm is near-optimal when $k$ is either $o(\sqrt{n})$ or $\omega(\sqrt{n})$, and they asked whether the ITP algorithm was also effective in the intermediate range. In this work, we show that when $k=\sqrt{n}$, the ITP algorithm is at best a $(1+c_0)$-approximation for some positive constant $c_0$. On the other hand, the approximation ratio of the ITP algorithm was known to be at most $0.995+\alpha$ due to Bompadre, Dror, and Orlin, where $\alpha$ is the approximation ratio of an algorithm for the traveling salesman problem. In this work, we improve the upper bound on the approximation ratio of the ITP algorithm to $0.915+\alpha$. Our analysis is based on a new lower bound on the optimal cost for the metric capacitated vehicle routing problem, which may be of independent interest.


翻译:我们对随机设置的单位-需求 Euclidean 电动车辆路由问题进行概率分析,在随机设置中,输入分布由单位-需求用户以独立、同样分布的两维平面统一随机点为模型的单位-需求客户组成。目标是使用一套最低总长度的路线访问每个客户,这样每条路线访问最多为k美元,其中美元是车辆的容量。以下所有结果都是随机设置并保持平庸比率。 这一问题最已知的多元-时差比率近似于1985年Haimovich和Rinnooy Kan推出的循环旅行分配(ITP)算法。他们显示,当美元为美元(sqrt{n})或美元(somega), 美元(sqrt{n}) 或美元(sqrt{n}) 。 他们询问ITP算法是否在中间范围有效。 在这项工作中,当美元- 美元- 美元- 美元- 美元- 美元- 美元- 美元- talxxxxxxxxxxxxxxxxxxxxxxxxxal 运算算算算时, ITP算算算算算算算为美元- 美元- 美元- 美元- 美元- 美元- 美元- 美元- sal- salxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx。

0
下载
关闭预览

相关内容

专知会员服务
28+阅读 · 2021年8月2日
专知会员服务
76+阅读 · 2021年3月16日
专知会员服务
50+阅读 · 2020年12月14日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
lightgbm algorithm case of kaggle(上)
R语言中文社区
8+阅读 · 2018年3月20日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Arxiv
0+阅读 · 2021年11月5日
Probabilistic Fair Clustering
Arxiv
0+阅读 · 2021年11月4日
Arxiv
3+阅读 · 2017年12月1日
VIP会员
相关资讯
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
lightgbm algorithm case of kaggle(上)
R语言中文社区
8+阅读 · 2018年3月20日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Top
微信扫码咨询专知VIP会员