In this paper, we develop deterministic fully dynamic algorithms for computing approximate distances in a graph with worst-case update time guarantees. In particular we obtain improved dynamic algorithms that, given an unweighted and undirected graph $G=(V,E)$ undergoing edge insertions and deletions, and a parameter $0 < \epsilon \leq 1$, maintain $(1+\epsilon)$-approximations of the $st$ distance of a single pair of nodes, the distances from a single source to all nodes ("SSSP"), the distances from multiple sources to all nodes ("MSSP''), or the distances between all nodes ("APSP"). Our main result is a deterministic algorithm for maintaining $(1+\epsilon)$-approximate single-source distances with worst-case update time $O(n^{1.529})$ (for the current best known bound on the matrix multiplication coefficient $\omega$). This matches a conditional lower bound by [BNS, FOCS 2019]. We further show that we can go beyond this SSSP bound for the problem of maintaining approximate $st$ distances by providing a deterministic algorithm with worst-case update time $O(n^{1.447})$. This even improves upon the fastest known randomized algorithm for this problem. At the core, our approach is to combine algebraic distance maintenance data structures with near-additive emulator constructions. This also leads to novel dynamic algorithms for maintaining $(1+\epsilon, \beta)$-emulators that improve upon the state of the art, which might be of independent interest. Our techniques also lead to improvements for randomized approximate diameter maintenance.
翻译:在本文中, 我们开发了确定性的全动态算法, 用于在最坏情况下更新时间保证的图表中计算近距离。 特别是, 我们获得了更佳的动态算法, 以未加权和未定向的图形$G=( V, E) 正在边缘插入和删除中, 参数0 < epsilon\leq 1$, 以最坏情况下更新时间$O( ⁇ 1. 529} 维持一个单一节点的美元距离, 从单一来源到所有节点( “ SSSP ” ) 的距离, 从多个来源到所有节点( “ MSSP ” ) 的距离, 或者所有节点之间的距离( “ APSP ” ) 。 我们的主要结果是确定性算法, 用最坏情况下更新时间 $( 1 { { { } $ ( n=1.529} ) $( ) ) 维持一个最坏的单一来源距离( ) ( ) ( ) ( 目前已知的随机自动递增量的计算法系数 $ ( $) ) ) 。 这也符合一个最差的改进的 的 由[ BMS, 0. 0. 0. 0. 1} 保持 的 美元 。