We study approximation by arbitrary linear combinations of $n$ translates of a single function of periodic functions. We construct some linear methods of this approximation for univariate functions in the class induced by the convolution with a single function, and prove upper bounds of the $L^p$-approximation convergence rate by these methods, when $n \to \infty$, for $1 \leq p \leq \infty$. We also generalize these results to classes of multivariate functions defined the convolution with the tensor product of a single function. In the case $p=2$, for this class, we also prove a lower bound of the quantity characterizing best approximation of by arbitrary linear combinations of $n$ translates of arbitrary function.


翻译:我们用任意的线性组合来研究周期函数单一函数的近似值,即一美元,我们研究周期函数的单一函数的任意线性组合。我们为一个函数的组合引发的类别中的单项函数构建了某种近似值的线性方法,并用这些方法证明美元到美元,即美元到美元时的美元接近率的上限值。我们还将这些结果推广到多种函数的类别中,这些函数定义了与单一函数的发声产物的相交。在这样的例子中,美元=2美元,对于这一类别,我们也证明以任意函数的美元任意线性组合为最佳近似值的上限值较低。

0
下载
关闭预览

相关内容

专知会员服务
32+阅读 · 2021年9月16日
专知会员服务
42+阅读 · 2020年12月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
已删除
将门创投
3+阅读 · 2018年10月11日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Soft-NMS – Improving Object Detection With One Line of Code
统计学习与视觉计算组
6+阅读 · 2018年3月30日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2022年1月4日
Arxiv
0+阅读 · 2022年1月3日
VIP会员
相关VIP内容
专知会员服务
32+阅读 · 2021年9月16日
专知会员服务
42+阅读 · 2020年12月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
已删除
将门创投
3+阅读 · 2018年10月11日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Soft-NMS – Improving Object Detection With One Line of Code
统计学习与视觉计算组
6+阅读 · 2018年3月30日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员