We consider the $\textit{Similarity Sketching}$ problem: Given a universe $[u] = \{0,\ldots, u-1\}$ we want a random function $S$ mapping subsets $A\subseteq [u]$ into vectors $S(A)$ of size $t$, such that the Jaccard similarity $J(A,B) = |A\cap B|/|A\cup B|$ between sets $A$ and $B$ is preserved. More precisely, define $X_i = [S(A)[i] = S(B)[i]]$ and $X = \sum_{i\in [t]} X_i$. We want $E[X_i]=J(A,B)$, and we want $X$ to be strongly concentrated around $E[X] = t \cdot J(A,B)$ (i.e. Chernoff-style bounds). This is a fundamental problem which has found numerous applications in data mining, large-scale classification, computer vision, similarity search, etc. via the classic MinHash algorithm. The vectors $S(A)$ are also called $\textit{sketches}$. Strong concentration is critical, for often we want to sketch many sets $B_1,\ldots,B_n$ so that we later, for a query set $A$, can find (one of) the most similar $B_i$. It is then critical that no $B_i$ looks much more similar to $A$ due to errors in the sketch. The seminal $t\times\textit{MinHash}$ algorithm uses $t$ random hash functions $h_1,\ldots, h_t$, and stores $\left ( \min_{a\in A} h_1(A),\ldots, \min_{a\in A} h_t(A) \right )$ as the sketch of $A$. The main drawback of MinHash is, however, its $O(t\cdot |A|)$ running time, and finding a sketch with similar properties and faster running time has been the subject of several papers. (continued...)


翻译:暂无翻译

1
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
12+阅读 · 2023年5月22日
Arxiv
18+阅读 · 2022年11月21日
Relational Deep Reinforcement Learning
Arxiv
10+阅读 · 2018年6月28日
Arxiv
14+阅读 · 2018年5月15日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关论文
Arxiv
12+阅读 · 2023年5月22日
Arxiv
18+阅读 · 2022年11月21日
Relational Deep Reinforcement Learning
Arxiv
10+阅读 · 2018年6月28日
Arxiv
14+阅读 · 2018年5月15日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员