Federated Learning (FL) paradigms enable large numbers of clients to collaboratively train Machine Learning models on private data. However, due to their multi-party nature, traditional FL schemes are left vulnerable to Byzantine attacks that attempt to hurt model performance by injecting malicious backdoors. A wide variety of prevention methods have been proposed to protect frameworks from such attacks. This paper provides a exhaustive and updated taxonomy of existing methods and frameworks, before zooming in and conducting an in-depth analysis of the strengths and weaknesses of the Robustness of Federated Learning (RoFL) protocol. From there, we propose two novel Sybil-based attacks that take advantage of vulnerabilities in RoFL. Finally, we conclude with comprehensive proposals for future testing, describe and detail implementation of the proposed attacks, and offer direction for improvements in the RoFL protocol as well as Byzantine-robust frameworks as a whole.
翻译:暂无翻译