We present a novel approach to evaluate the performance of interpretability methods for time series classification, and propose a new strategy to assess the similarity between domain experts and machine data interpretation. The novel approach leverages a new family of synthetic datasets and introduces new interpretability evaluation metrics. The approach addresses several common issues encountered in the literature, and clearly depicts how well an interpretability method is capturing neural network's data usage, providing a systematic interpretability evaluation framework. The new methodology highlights the superiority of Shapley Value Sampling and Integrated Gradients for interpretability in time-series classification tasks.
翻译:我们提出一种新的方法来评价时间序列分类解释方法的性能,并提出新的战略来评估域专家与机器数据解释之间的相似性。新办法利用合成数据集的新组合,并引入新的可解释性评价指标。新办法处理文献中遇到的几个共同问题,并清楚地说明可解释方法如何很好地掌握神经网络的数据使用情况,提供一个系统的可解释性评价框架。新方法突出显示了Shapley价值抽样和在时间序列分类任务中可解释性综合等级的优越性。