The problem of finding a nonzero solution of a linear recurrence $Ly = 0$ with polynomial coefficients where $y$ has the form of a definite hypergeometric sum, related to the Inverse Creative Telescoping Problem of [14][Sec. 8], has now been open for three decades. Here we present an algorithm (implemented in a SageMath package) which, given such a recurrence and a quasi-triangular, shift-compatible factorial basis $\mathcal{B} = \langle P_k(n)\rangle_{k=0}^\infty$ of the polynomial space $\mathbb{K}[n]$ over a field $\mathbb{K}$ of characteristic zero, computes a recurrence satisfied by the coefficient sequence $c = \langle c_k\rangle_{k=0}^\infty$ of the solution $y_n = \sum_{k=0}^\infty c_kP_k(n)$ (where, thanks to the quasi-triangularity of $\mathcal{B}$, the sum on the right terminates for each $n \in \mathbb{N}$). More generally, if $\mathcal{B}$ is $m$-sieved for some $m \in \mathbb{N}$, our algorithm computes a system of $m$ recurrences satisfied by the $m$-sections of the coefficient sequence $c$. If an explicit nonzero solution of this system can be found, we obtain an explicit nonzero solution of $Ly = 0$.
翻译:找到一个非零的解决方案, 包括 $Ly = 0$ 的线性重现 $Ly = 0美元 以多元系数 =\ k(n)\\ rangle\ k) = 0美元 。 与 14 [Sec.8] 的反创新远程校正问题有关, 现在问题已经持续了三十年。 我们在这里展示了一个算法( 在 SageMath 软件包中实施) 。 鉴于这样的复现以及一个准三角、 可转换和可比较的因子基基基基值 $\ {B} =\ lk(n) legn\ k(n) 美元 = legn(n) n_k(n) y= 0_k_infty$(n) 美元, 多边空间 $\\ mathb{K} [n] 美元, 域基数= c= colorma = a cal nual yal y = $.rbs a b.