Preservation of linear and quadratic invariants by numerical integrators has been well studied. However, many systems have linear or quadratic observables that are not invariant, but which satisfy evolution equations expressing important properties of the system. For example, a time-evolution PDE may have an observable that satisfies a local conservation law, such as the multisymplectic conservation law for Hamiltonian PDEs. We introduce the concept of functional equivariance, a natural sense in which a numerical integrator may preserve the dynamics satisfied by certain classes of observables, whether or not they are invariant. After developing the general framework, we use it to obtain results on methods preserving local conservation laws in PDEs. In particular, integrators preserving quadratic invariants also preserve local conservation laws for quadratic observables, and symplectic integrators are multisymplectic.


翻译:以数字集成器保存线性和二次变异性的问题已经研究过,但是,许多系统都具有线性或二次变异性,这些系统不是不易变的,但能满足表达系统重要特性的进化方程。例如,时间演变PDE可能具有符合当地养护法的可观察性,例如汉密尔顿州PDE的多视角养护法。我们引入了功能等同概念,一种自然感,即数字集成者可以保持某些类别的可观察物所满足的动态,而不管它们是否不易变异。在开发总框架之后,我们利用它来获取关于维护PDEs地方养护法的方法的结果。特别是,保存四变量的合成物也保留了四面观察物的本地养护法,而混杂的合成物是多视角的。

0
下载
关闭预览

相关内容

Integration:Integration, the VLSI Journal。 Explanation:集成,VLSI杂志。 Publisher:Elsevier。 SIT:http://dblp.uni-trier.de/db/journals/integration/
【干货书】机器学习算法视角,249页pdf
专知会员服务
143+阅读 · 2021年10月18日
【MIT干货书】机器学习算法视角,126页pdf
专知会员服务
78+阅读 · 2021年1月25日
专知会员服务
85+阅读 · 2020年12月5日
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
【干货书】机器学习Primer,122页pdf
专知会员服务
107+阅读 · 2020年10月5日
一份简单《图神经网络》教程,28页ppt
专知会员服务
125+阅读 · 2020年8月2日
【干货书】Python语音计算导论,408页pdf
专知会员服务
103+阅读 · 2020年7月12日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
8+阅读 · 2021年2月19日
VIP会员
相关VIP内容
【干货书】机器学习算法视角,249页pdf
专知会员服务
143+阅读 · 2021年10月18日
【MIT干货书】机器学习算法视角,126页pdf
专知会员服务
78+阅读 · 2021年1月25日
专知会员服务
85+阅读 · 2020年12月5日
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
【干货书】机器学习Primer,122页pdf
专知会员服务
107+阅读 · 2020年10月5日
一份简单《图神经网络》教程,28页ppt
专知会员服务
125+阅读 · 2020年8月2日
【干货书】Python语音计算导论,408页pdf
专知会员服务
103+阅读 · 2020年7月12日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员