Preservation of linear and quadratic invariants by numerical integrators has been well studied. However, many systems have linear or quadratic observables that are not invariant, but which satisfy evolution equations expressing important properties of the system. For example, a time-evolution PDE may have an observable that satisfies a local conservation law, such as the multisymplectic conservation law for Hamiltonian PDEs. We introduce the concept of functional equivariance, a natural sense in which a numerical integrator may preserve the dynamics satisfied by certain classes of observables, whether or not they are invariant. After developing the general framework, we use it to obtain results on methods preserving local conservation laws in PDEs. In particular, integrators preserving quadratic invariants also preserve local conservation laws for quadratic observables, and symplectic integrators are multisymplectic.
翻译:以数字集成器保存线性和二次变异性的问题已经研究过,但是,许多系统都具有线性或二次变异性,这些系统不是不易变的,但能满足表达系统重要特性的进化方程。例如,时间演变PDE可能具有符合当地养护法的可观察性,例如汉密尔顿州PDE的多视角养护法。我们引入了功能等同概念,一种自然感,即数字集成者可以保持某些类别的可观察物所满足的动态,而不管它们是否不易变异。在开发总框架之后,我们利用它来获取关于维护PDEs地方养护法的方法的结果。特别是,保存四变量的合成物也保留了四面观察物的本地养护法,而混杂的合成物是多视角的。