Traffic sampling has become an indispensable tool in network management. While there exists a plethora of sampling systems, they generally assume flow rates are stable and predictable over a sampling period. Consequently, when deployed in networks with dynamic flow rates, some flows may be missed or under-sampled, while others are over-sampled. This paper presents the design and evaluation of dSamp, a network-wide sampling system capable of handling dynamic flow rates in Software-Defined Networks (SDNs). The key idea in dSamp is to consider flow rate fluctuations when deciding on which network switches and at what rate to sample each flow. To this end, we develop a general model for sampling allocation with dynamic flow rates, and then design an efficient approximate integer linear program called APX that can be used to compute sampling allocations even in large-scale networks. To show the efficacy of dSamp for network monitoring, we have implemented APX and several existing solutions in ns-3 and conducted extensive experiments using model-driven as well as trace-driven simulations. Our results indicate that, by considering dynamic flow rates, APX outperforms the existing solutions by up to 10% in sampling more flows at a given sampling rate.
翻译:暂无翻译