We present first empirical results from our ongoing investigation of distribution shifts in image data used for various computer vision tasks. Instead of analyzing the original training and test data, we propose to study shifts in the learned weights of trained models. In this work, we focus on the properties of the distributions of dominantly used 3x3 convolution filter kernels. We collected and publicly provide a data set with over half a billion filters from hundreds of trained CNNs, using a wide range of data sets, architectures, and vision tasks. Our analysis shows interesting distribution shifts (or the lack thereof) between trained filters along different axes of meta-parameters, like data type, task, architecture, or layer depth. We argue, that the observed properties are a valuable source for further investigation into a better understanding of the impact of shifts in the input data to the generalization abilities of CNN models and novel methods for more robust transfer-learning in this domain. Data available at: https://github.com/paulgavrikov/CNN-Filter-DB/.
翻译:我们从目前对用于各种计算机视觉任务的图像数据的分布变化进行的调查中提出初步的经验结果。我们不分析最初的培训和测试数据,而是建议研究经过培训的模型的学习重量的变化。在这项工作中,我们着重研究主要使用的3x3卷进过滤内核分布的特性。我们收集并公开提供一套数据,其中包括来自数百个受过训练的CNN的5亿多个过滤器的5亿多个过滤器,使用广泛的数据集、结构和视觉任务。我们的分析显示,在诸如数据类型、任务、结构或层深等经培训的元参数不同轴线的过滤器之间,存在着有趣的分布变化(或缺乏这种变化)。我们指出,观察到的特性是进一步调查投入数据向CNN模型的一般性能力转变的影响的宝贵来源,以及在这一领域进行更强有力的转移学习的新方法。数据见:https://github.com/paulgavrikov/CNN-Filter-DB/。