Conformal prediction is a popular tool for providing valid prediction sets for classification and regression problems, without relying on any distributional assumptions on the data. While the traditional description of conformal prediction starts with a nonconformity score, we provide an alternate (but equivalent) view that starts with a sequence of nested sets and calibrates them to find a valid prediction set. The nested framework subsumes all nonconformity scores, including recent proposals based on quantile regression and density estimation. While these ideas were originally derived based on sample splitting, our framework seamlessly extends them to other aggregation schemes like cross-conformal, jackknife+ and out-of-bag methods. We use the framework to derive a new algorithm (QOOB, pronounced cube) that combines four ideas: quantile regression, cross-conformalization, ensemble methods and out-of-bag predictions. We develop a computationally efficient implementation of cross-conformal, that is also used by QOOB. In a detailed numerical investigation, QOOB performs either the best or close to the best on all simulated and real datasets.


翻译:在不依赖数据的任何分布假设的情况下,统一预测是一种为分类和回归问题提供有效预测工具的流行工具。虽然对符合预测的传统描述始于不一致性评分,但我们提供了另一种(但等效的)观点,从嵌套组序列开始,并校准它们以找到一个有效的预测组。嵌套框架将所有不兼容的得分,包括最近基于量化回归和密度估计的建议,都包含所有不兼容的得分,包括最近基于量化回归和密度估计的建议。这些想法最初是根据样本分离得出的,但我们的框架无缝地将其扩展到其他组合计划,如跨形式、jacknife+和包外方法。我们使用这个框架来生成一种新算法(QOOB,已宣布的立方),将四个想法结合起来:四分回归、交叉正规化、混合方法和包外预测。我们开发一个计算高效的跨形式执行方法,QOOB也使用这一方法。在详细的数字调查中,QOOB在所有模拟和真实数据集中进行最佳或接近最佳的计算。

0
下载
关闭预览

相关内容

最新《自监督表示学习》报告,70页ppt
专知会员服务
85+阅读 · 2020年12月22日
专知会员服务
50+阅读 · 2020年12月14日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
鲁棒机器学习相关文献集
专知
8+阅读 · 2019年8月18日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
随波逐流:Similarity-Adaptive and Discrete Optimization
我爱读PAMI
5+阅读 · 2018年2月6日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Advances and Open Problems in Federated Learning
Arxiv
18+阅读 · 2019年12月10日
Federated Learning for Mobile Keyboard Prediction
Arxiv
5+阅读 · 2018年11月8日
Arxiv
17+阅读 · 2018年4月2日
Arxiv
5+阅读 · 2017年12月14日
VIP会员
相关VIP内容
最新《自监督表示学习》报告,70页ppt
专知会员服务
85+阅读 · 2020年12月22日
专知会员服务
50+阅读 · 2020年12月14日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
相关资讯
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
鲁棒机器学习相关文献集
专知
8+阅读 · 2019年8月18日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
随波逐流:Similarity-Adaptive and Discrete Optimization
我爱读PAMI
5+阅读 · 2018年2月6日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Top
微信扫码咨询专知VIP会员