We introduce SparseNeuS, a novel neural rendering based method for the task of surface reconstruction from multi-view images. This task becomes more difficult when only sparse images are provided as input, a scenario where existing neural reconstruction approaches usually produce incomplete or distorted results. Moreover, their inability of generalizing to unseen new scenes impedes their application in practice. Contrarily, SparseNeuS can generalize to new scenes and work well with sparse images (as few as 2 or 3). SparseNeuS adopts signed distance function (SDF) as the surface representation, and learns generalizable priors from image features by introducing geometry encoding volumes for generic surface prediction. Moreover, several strategies are introduced to effectively leverage sparse views for high-quality reconstruction, including 1) a multi-level geometry reasoning framework to recover the surfaces in a coarse-to-fine manner; 2) a multi-scale color blending scheme for more reliable color prediction; 3) a consistency-aware fine-tuning scheme to control the inconsistent regions caused by occlusion and noise. Extensive experiments demonstrate that our approach not only outperforms the state-of-the-art methods, but also exhibits good efficiency, generalizability, and flexibility.
翻译:我们引入了Sparse NeuS, 这是用于从多视图图像中进行表面重建任务的一种新型神经造影法。 当仅提供少量图像作为投入时,这项任务就变得更加困难了,因为现有的神经重建方法通常产生不完整或扭曲的结果。 此外,由于无法向看不见的新场景进行概括化,因此在实践中无法应用。 相形之下,SparseNeuS可以向新场景进行概括化,并以稀疏图像(仅有2或3个或3个)很好地工作。 SparseNeuS采用签字的距离功能(SDF)作为表面代表,并通过引入通用地貌预测的几何编码量从图像特征中学习一般前科。 此外,还引入了几种战略,以有效利用稀少的视角进行高质量的重建,包括1个多层次的几何学推理框架,以便以粗到线的方式恢复地表;2) 一种用于更可靠的颜色预测的多尺度混合计划;3) 一种一致的微调办法,以控制因隔离和噪音造成的不一致的区域。 广泛的实验表明我们的方法不仅超越了状态的灵活性和一般的效率,而且还展示了一般的方法。